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The ssoichiometric ratios and the equilibrium constants describing the extent of 
formation of complexes are the basic information required in studies of complex 
formation between two species. Some of this information can be obtained by meas- 
uring the apparent solubility, the absorption spectrum, or the reactivity of one 
species (the substrate) as a function of the concentration of the other species (the 
ligand). The stability constant evaluated by these methods, assuming that a single 
complex of 1 : 1 substrateligand~ratio is present, can be related to the actual con- 
stants of the system. Analyses of some of the complex systems most like\y to be 
encountered show that the three experimental approaches may not always yield the 
same numerical result and that comparative studies with several techniques may 
yield valuable information concerning the natures of the complexes. The solu- 
bility, spectral, and kinetic methods for studying complexes are, in general, subject 
to about the same degree of nonselectivity in their responses to multiple complexes 

and interactions. 

HE CONCEPT of complex formation has been 
Tadopted as a simple hypothesis that  can 
account for nonadditive behavior in the physical 
and chemical properties of solutions of two or 
more species. With this hypothesis i t  becomes 
possible to utilize quantitative measures of these 
properties to describe the extent of interaction 
between the species and to  investigate the nature 
of the interaction product, or complex. Many 
definitions of “a complex” have been proposed, 
but  for the purpose of this papcr i t  will not be 
necessary t o  limit sharply the chemical nature of 
the species, and the techniques to be discussed 
may be applicable to  the study of reactions that  
may not  he accepted aq complexation reactions. 
Throughout this paper complex formation is 
considered to  be a reversible chemical reaction 
in which the rate of attainment of equilibrium is 
much greater than any rates involved in the 
measuring processes. The system is, therefore, 
considered to  be at equilibrium. 

The basic purpose of studies of complex forma- 
tion is to  provide a comprehension of the prop- 
erties of complexes, including their structure and 
reactivity. Since the reversibility of complex 
formation is the fundamental aspect relating all 
of these processes, thc general reaction may be 
written 

mS + nL %L,, 

where S represents the substrate and L is the 
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ligand. (The substrate is the compound whose 
apparent properties are measured.) Given ade- 
quate evidence that  a complex is present in a 
system, the first information to be sought is its 
stoichiometry, i . e . ,  the values of m and n. It is 
probable that  in many (perhaps most) systems 
more than one complex is formed, and the stoi- 
chiometries of all species are desired. Note also 
that i t  is entirely conceivable that two or more 
complexes may co-exist with the same stoichiom- 
etry but  different structures (1). (A single 
complex species will possess a unique average 
molecular and electronic configuration.) 

The strength or stability of a complex is specified 
in terms of its stability (association, formation) 
constant. The over-all stability constant K,, for 
the complex formation rcaction is written 

where brackets signify molar concentrations, and 
K,, is the constant applicable to the solvent system 
and temperature employed. Thc standard state of 
the solute is taken to be the infinitely dilute solution 
in the experimental solvent. Often the concentra- 
tions of S and L are sufficiently low that they do not 
affect the value of the stability constant. An 
alternative description of the stability of S,L, is 
available in the step stability constant; the assump- 
tion is that S,L, is formed from S,“L<*-I) by re- 
action with one L, or from S(m-l)Ln by reaction with 
one S. Rossotti and Rossotti (2) review methods 
for the determination of stability constants. 

Most of the molecules of pharmaceutical and 
biological interest are of complicated structure and 
contain numerous functional groupings. Such 
molecules will, therefore, possess multiple inter- 
action sites for complex formation. A given system 
of substrate, ligand, and solvent can be described 
as a member of one of the following two classes 

( a )  Only one complex species is formed. This 
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complex may be a resultant of multiple interactions. 
The possibility is admitted that the complex con- 
tains only substrate or only ligand molecules. 

( b )  Two or more complex species are formed. The 
several complexes may be formed by means of dif- 
ferent types of interaction forces or by the same 
interactions differently oriented. 

In thc studies of complexation equilibria and their 
relation to enzyme specificity behavior from these 
laboratories, solubility mcasurcmcnts, absorption 
spectroscopy, and rate nieasurements for the deter- 
mination of complex stability have bccn employed. 
These are all well-known techniques, but lew inves- 
tigators have systematically applied more than onc 
of them to a complexation system (3-5). The three 
methods do not always yield tlie same numerical rc- 
sult (taking into account the expected experimental 
uncertainty), and the authors’ analysis of these 
diffcrcnccs may be of value to others. 

The usual procedure is to assume that a singlc 
complex of one-to-one stoichiomctry is responsible 
fur the observed effects. If the data suggest that 
this simple assumption is untenable, another Will 
of course be made in its place, but the observations 
are not always susceptible to such an interpretation. 
The problem, therefore, is to find the relationship 
between the apparent 1:l stability constant (as 
evaluated by each of the cxpcrimental methods) and 
the actual parameters of the system. This analysis 
will be carried out for each tcchnique as applied to 
the systems most likely to be encountered. A com- 
parison of thc three methods will then be given. 

ONE COMPLEX PRESENT 

Solubility Method.-2 : I  Complex.-The theory 
and practice of the solubility method have recently 
been reviewed in detail (6), and only a brief out- 
line will bc given here. The experimental opera- 
tion entails the addition of an equal weight (in ex- 
cess of its normal solubility) of the slightly soluble 
substrate into each of several vials. A constant 
amount of solvent is added to each container, 
then successively increasing portions of the relatively 
soluble ligand are added to these vessels, which are 
closed and brought to solubility equilibrium a t  
constant temperature. The solution phases are 
analyzed for their total conccntration of S, no 
matter what its molecular state may be. A phase 
diagram is constructed by plotting, on the vertical 
axis, the total molar conccntration of S found in 
the solution, St,  against the total molar concentra- 
tion of L added, Lt. Here only the formation of 
solublc complexes is considered; these produce a 
phase diagram consisting of a smooth curve with a 
positive slopc. In general, if the solution contains 
but one complex, S,L,, the concentrations at any 
point on the curve can be expressed (see Appendix 
for an cxplanation of the symbols) : 

IS1 = Sa 
[S,L,I (St  - S ) / m  
[L] = L* - n[S,L,J (Eq. 2) 

since the concentration of free S is maintained con- 
stant by the presence of solid substrate. Consider 
the case in which m = n = 1. Then Eq. 1 for K11 

is combined with Eq. 2 to give 
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showing that the plot of St weYJus Lt is a straight 
line with intercept So on the vertical axis; the slope 
of this line is K&/( 1 + KIISO),  leading to 

(Eq. 3 )  k’llSOL1 + so 
S t  = 1 + Kl& 

In general, the apparent 1: 1 stability constant is 
evaluated from solubility measurcmcnts by mcans 
of Eq. 4; if a single 1: 1 complex is present, the 
apparent K1l (symbolized K’ll) dctcrmincd in this 
manner is equal’ to the actual K11. 

(Eq. 4) 
slope 

K1l’ = intercept ( 1  - slope) 

2 : 1  Complex.-If, morc generally, 71 = 1 but 
m assumes any value, Eqs. 1 and 2 give 

Thc phase diagram is linear a5 long as the complex 
contains only 1 molecule of L If the slopc is 
grcatcr than unity, then a t  least one species must 
be present in which m is greater than 1, for i t  is 
clearly impossible for 1 mole of L to take more than 
1 mole of S into solution if thc complex is of the 1 : 1 
type. On the other hand, a dope smaller than 1 
does not necessarily mcan that a 1: 1 complex is 
formed, though this assumption is usually madc 
More definite statemcnts concerning tlie order with 
respect to  S cannot usually be made since thc prcs- 
ence of solid substrate is responsible for maintaining 
a constant activity of S in the system. 

If a single 2: 1 complex is prcsent, thc slopc is 
given by Eq. 6. 

If this quantity is less than 1, the system will be 
interpreted as a probable 1:l complex, and an 
apparent K‘n will be calculated from Eq. 4. The 
actual nature of this quantity is found by combining 
Eqs. 4 and 6, 

where Kll’ is the apparent 1 : 1 stability constant. 
(If the true stoichiometry were known, it would be 
a simple matter to evaluate the correct constant, 
K21,  but this information will seldom be available.) 

This discussion has ignored the route of formation 
of SzL. This can conceivably occur in three ways: 
2s + L = S2L; S2 + L = s2L; SL + s = SZL. 
The first of these has been employed in the preceding 
discussion. The other possibilities require the 
presence of another complex, and can be treated 
with methods devclopcd latcr for these more com- 
plicated systems. 
1 : 2 Complex.-When a complex is present that 

is second-order in L, the solubility diagram will not 
be linear hut will show a positive curvature (6). 
Such a curvature would be recognized and would 
prevent evaluation of an apparent Kn’. If, how- 
ever, the system contains both 1:1 and 1:2 com- 

1 This is not exactly true, of course, for the general solvent 
effect of S and L on the constmt has been neglected; these 
relatively minor effects may he  responsible for small differ- 
ences, but can be ignored as long as St  and Lt remain fairly 
small. The “statistical” or “contact” complexes formed 
as a result of random distribution of the molecules have also 
been neglected (7. 8). 
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plexes, the deviation from linearity may be un- 
noticed and misinterpretation may result. This 
systcm will be analyzed in a later section. 

Substrate Diem.-Suppose S undergoes reaction 
to form the dimer S1 with dirncrization constant 
Kss. Then the total concentration St = [ S ]  + 
2[S5] ,  or S t  = So + 2KssSo2. Obviously thc apparcnt 
complexation constant evaluated from the phase 
diagram will be zero, but the intercept will give Su + ~ K s s S O ~  rather than So. No solubility experiment 
will reveal this anomaly, however. 

Spectral Method.-1 :1 CumpZex.-If the molar 
absorptivitics of the complex and the substratc diffcr 
a t  the same wavelength, it may be possible to de- 
termine the stability constant spectrophotometri- 
cally. I t  is assumed that Beer’s law is follow-ed by 
all spccics. Then at a concentration S t  of substrate, 
in the absence of ligdnd, the solution absorbance is 

Ao = aabSt (Eq. 8) 

In the presence of ligand at  total concentration Lt, 
thc absorbance of the solution containing the samc 
total substrate concentration is 

Ar.  = ash[Sl + a ~ b [ L l  + aiib[SLl 

which, combined with the material balance on S, 
gives 

AT, = asbSt + aLbLt + Aab[SL]  

where Aa = all - as - UL. By measuring the 
solution absorbance against a reference containing 
ligand a t  concentration L,, the measured absorbance 
becomes 

41.’ = asbSt + A ab[SL]  (Eq. 9)  

Combining Eqs. 8 and 9 with the stability constant 
definition leads to 

AA / h  1 K ~ I A U [ S ]  [L]  

where A A =  AL’ - A,,. Utilizing the cxprrssion 
[S] = &/(I + KII [ L ] ) ,  this becomes 

Journal of Pharmaceutical Sciences 

large, it  is essential to hold S t  to a small valuc if 
Eq. 11 is to be applied. 

As noted above, Eq. 11 is exact, but its use re- 
quires an approximation. It is possible to introduce 
the approximation during the derivation (2 ) ,  leading 
to the equation 

b L t / A A  = (St + Lt) /AaSt  + l/AaKiiSi 

I t  can be shown that the application of this equation 
requires conditions that are similar to those adopted 
in the use of Eq. 11. Throughout this paper the 
spcctral mcthod w-ill be discussed in terms of Eq. 11. 

2:l Complex.-In this system the equation corre- 
sponding to Eq. 9 is written 

AT,‘ ~ s h S t  + AabISL] 

whcrc Aa = - 2as - a[,. The concentration of 
free substrate is given by 

This equation can be put into several lincar forms, 
one of these being Eq. 11, which is similar to the 
equation used by Benesi and Hildebrand (9, 10) to 
determine stability constants spcctrophoto- 
metrically. 

b / A A  = l /K11St&~[L]  + 1/SiAa (Eq. 11) 
If [L]  can be approximated by Lt, a plot of b / A A  
versus 1/Lt will be linear. The stability constant 
KII is taken as the ratio interceptlslope of this plot. 
This is the operational definition of thc spcctrally 
measured 1 : 1 stability constant. Note that the 
types of interaction or their distribution in the 
complex are irrclevant, the  only requirement in the 
application of the method being that Aa is not equal 
to zero. 

No approximations have been introduced in the 
derivation of Eq. 11: but i t  is necessary to assume 
[L] = I,t in its application. This assumption is 
cquivalent to supposing that 1 + KI1 [S] = 1, 
bccduse of the relationship Lt = [L] (1 + Kll Is]). 
The assumed equality [L] = Lt is, therefore, sensi- 
tive to the magnitude of the stability constant and 
to the substrate concentration. If Kll is quite 

= 1 + 2K*,[Sl St [Ll 

The resulting equation in its reciprocal form is 

b / A A  = I / K ~ S ~ A U [ S ] [ L ]  + 2/StAa (Eq. 12) 

so the apparent spectral constant is 

Kn‘ = 2Kzi[SI (Eq. 13) 

Note, however, that the plot should not theoretically 
be lincar, since thr slope is a function of IS]. This 
complication will be trcatcd in more detail in later 
sections dealing with multiple complexes. 

Substrate Dimer.-If S dimerizes with a change in 
spectrum, the quantity A A  will bc indcpcndcnt of 
Lt. The apparent stability constant will be zero. 
Beer’s law will not be followed by the substrate if 
the dimer’s molar absorptivity is not twice that of 
the monomer. 

Kinetic Method.-1:l Cumplex.-The kinetic 
method, as it has been most frequently applied, 
utilizes a reduction in rate of a reaction of S when L 
is present to obtain information about the nature 
of the complex; the basic assumption is that the 
decreased reactivity is the result of complexation, 
the complexed S being less reactive than free S. 
Thc kinetic scheme can be represented 

Kl1 

S + L = S L  
ks 

S + R --f products 

k.1 
S L  + R -f products 

If, as is usually the case, a reagent R is involvcd in 
the reaction, k s  is the second-order rate constant 
(often determined under pseudo first-order condi- 
tions with reagent in excess). I t  is assumed that R 
does not form coniplexes with S or L. The tlieoreti- 
cal rate equation is 

= ks[Sl IR1 + kiiISL1 [Rl (EY. 14) 

and thc cxpcrimental rate equation is 

D = kutm.S, (Eq. 15) 

whrrr bobs. is the pseudo first-order rate constant. 
Setting Eqs. 11 arid 1.5 equa1 and dividing through 
by 1Rl and St, 
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ks' = ksfe + kiifii (Eq. 16) 

where kg' is the apparent second-order rate con- 
stant, fa is the fraction of S in thc uncomplexed 
forin, and f l l  is the fraction present as SL. The 
stability constant K1l is combined with the defini- 
tions of these fractions, giving Eq. 17. 

In  the special case that k11 = 0, Eq. 
expressed in the forms Eqs. 18 and 19. 

ks' = ksfs 

k's/k's = Kli[L] + 1 

According to Eq. 18, a plot of ks' versus fs is linear, 
passing through the origin, with slope ks. Prior 
knowlcdgc of Kl1 is required to calculatefs. Equation 
19, however, can be plotted without this knowledge 
if the equality [L] = Lt may be made. Then thc 
slope of the plot of ks/ks' versus L, gives A-11. 

If kll # 0, the general Eq. 16 must be used. Since + f l ,  = 1, this can be written 

ks -ks' = fil(ks - kll)  (Eq. 20) 

Introducing the definitions i i l  = kll/ks and yll = 1 
~- r11 permits Eq. 20 to be transformed to Eq. 21. 

ks - ks' = qiiksfn 0%. 21) 

or 

Equation 22 can be placed in the following three 
forms amenable to linear graphing: 

Throughout this paper the kinetic method will bc 
treated in terms of Eq. 23, which predicts that a 
plot of l/(ks - ks'), or of kg/(ks - ks'), versus 
1/ [L] should be linear. The kinetically determined 
1:l stability constant is then dcfined as the ratio 
intercept/slope of this plot. From the interccpt 
value the quantity yll, and ultiinately k l l ,  can bc 
evaluated. 

Equation 19 has frequently been employed for the 
estimation of stability constants from rate measure- 
ments. This procedure is not recommended, how- 
ever, for the reason made evident in Fig. l .  In this 
figure Eq. 19 is plotted for three hypothetical sys- 
tcms having p l ~  values of 0.5, 0.9, and 1.0; in each 
instance the true Kit = 25.0 h - l .  Only the topmost 
h e  should be straight, since Eq. 19 is valid only 
when qll = 1.0 and in fact the other lines do exhibit 
a slight negative curvature. But if these were 
experimental points based on ordinary rate data, 
rather than calculated theoretical points, it is 
probable that these curves would bc interpreted as 
straight lines.% The slopes of these lines, which are 

2 As K I L  is made larger. the curvature in these plots be- 
comes more evident. 

~ -- 
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Fig. 1.-Plots of Eq. 19 for systems containing 
a singlc 1: 1 complex with stability constant KII = 
25.0 A4-I and the q values shown. 

J/(L) ~ ' 1  

Fig. 2.--Plots of thc data shown in Fig. 1 according 
to  Eq. 23. 

the apparent 1 : I stability constants according to 
Eq. 19, are 25 (for ql, = 1.0), 18 (lor q l l  = O.Y), and 
5.4 (for yll = 0.5). I t  is suggested that Eqs. 23, 24, 
or 25 be used in analyzing kinetic data. The samc 
data plotted in Fig. 1 have been rcplotted in Fig. 2 
according to Eq. 23; the apparent I:1 stability 
constant is 25 M-I in each case. 

2 : I  Complex.-In dealing with this systcm it 
becomes necessary to take into account various 
possible fates of the complex S?L. I t  map undergo 
reaction with R to give products from one S mole- 
cule, releasing the other unreacted. or both S molc- 
cules may react, or 2 molecules of R may be re- 
quired, etc. The simplest assntnption will bc 
adopted, that k21 = 0, recognizing that this places 
a limit on the applicability of the result. Then thc 
basic equation, corresponding to Eq. 16, is 

ks' ksfs (Eq. 26) 

The fractionffi = [S]/Sl, while St = IS] 4- 2[S,L]. 
Combining these equations with the definition of 
KQI gives 

fs = 1/(1 C 2K211Sl[Ll) 

which, with Eq. 26, leads to 

ks' - ks/(l  $- 2K21[S][L]) (Eq. 27) 

Equation 27 shows that ks', a t  a given ligand co~i- 
centration, is a function of substrate concentration; 
in other words, the apparent rate constant will vary 
with time as the reaction proceeds. If ineasurcmcnts 
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are made for only a small portion of the total re- 
action time, it is quite possible (taking into account 
ordinary experimental uncertainties) to overlook 
the variability of iks‘ and to interpret the system as 
belonging to the 1 : 1 class. Equation 27 can be 
converted to the usual plotting form: 

l / ’ (ks  - ks‘ )  = 1/2ksKzi[S][L] + l / k s  (Eq. 28) 

The kinetically evaluated K11’ is equal to the ratio 
interceptlslope, or 

Kii’ = 2Kn[S] (Eq. 29) 

Substrate Dirner.-If S dimerizes, and the dimeric 
form is essentially unrcactive, the apparent constant 
ks’ will be related to the substrate concentration by 
the equation ks‘ = ks( 1 + 2Kss[S] ). The apparent 
constant will, therefore, vary with time during a 
reaction. Since ks’ is not dependent upon tlie ligand 
concentration, however, the apparent 1 : 1 stability 
constant will be zero. 
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1 :I and 1 : 2 Complexes.-Combining the step 
constants KII and K(lz) with the material balance 
equations gives 

TWO COMPLEXES PRESENT 

Solubility Method.-Two 1:l Complexes.-It is 
possible that two complexes of 1 : 1 stoichiomctry 
but different structures may co-exist. If one dis- 
tinguishes between these by representing them 
as SL and LS, the solubility conservation equations 
may be written 

so = [SI 

st = [SI + [SLI + [LSI 

Lt = [Ll + [SLI + [LSI 

These are combined with the stability constants to 
give 

which has the same form as Eq. 3 for a single 1 : 1 
complex. Applying Eq. 4 shows that 

Kll’ = KSL + KLS (Eq. 31) 

Thus the apparent 1 : 1 stability constant evaluated 
by solubility measurements gives the sum of the 
individual constants. This can be generalized to 
any number of 1 : 1 complexes. Note that the slope 
of the phase diagram cannot excccd unity as long 
as only 1 : 1 complexes are present. 

1 : 1 and 2 :  1 Complexes.-Thr step stability 
constants are defined as 

A-11 = [SLI/[SI [Ll 
Kp1, = [SLLI /[Sl [SLI 

The development follows the lines already indicated. 
The equation of the phase diagram is 

Combining the slope of this plot with Eq. 4: 

That a mathematically equivalent expression would 
be obtained if the over-all stability constant had 
been employed can be seen from the equality KZI  

. .  . . 

which, with Eq. 4, leads to 

According to Eq. 34 the phase diagram should show 
a positive curvature; but if the 1 : 1 complexing is 
much more extensive than the 1 : 2 type, this non- 
linearity may not be noticed. Methods are available 
to analyze this system, when i t  is recognized, to 
obtain the individual stability constants (6). 

1 :1 Complex and Ligand Dimer.-The equation of 
the phase diagram is easily developed as before: 

K1lSoLt + So (Eq. 36) 
S t  = 1 + KllSo + ZKLLWI 

where KLL = [L2]/[LI2. The phase diagram will 
exhibit a negative curvature, but if the curve is 
mistaken for a straight line the apparent 1:l 
stability constant that will be evaluated is given 
by Eq. 37. 

1 : 1 Complex and Substrate Darner.--In this case 
the equation of the phase solubility diagram is 

The slope of the straight line is the same as that 
which would be observed in the abscnce of dimer for- 
mation, but the intercept is different. The apparent 
constant is 

Spectral Method.-Two 1 : I  Complexes.--If the 
two complexes SL and LS are formed and at least 
one of them possesses a molar absorptivity different 
from free S, a spectral change will be observed. 
The analysis follows that given for a single 1 : 1 com- 
plex. The concentration of free substrate is related 
to the other system variables by Eq. 39. 

The reciprocal form of the equation for this system is 

(where A ~ S L  = USL - as - aL and AULS = aLs 
- - aL), showing that the apparent 1: 1 stability 
constant is given by 

Kn’ = KSL + K L S  (Eq. 41) 
This result has been pointed out by several authors 
(1). Even if one of the complexes has an absorption 

= KiiKrzi,. spectrum identical with that of the free substrate, 
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K1l‘ will be given by Eq. 41. This may be intui- 
tively pictured as the result of a dcplction of free S 
by formation of this second complex, even though 
it is not spectrally distinctivc. 

1 : 1 and 2: I Complexes.-This system should not, 
theoretically, yield a linear reciprocal plot; yet, as 
Johnson and Bowcn have shown, the experimental 
plots may well appear to be linear (11). Thc 
analysis may be conducted as in earlier examples, 
leading to 

A A / b  = Kii[S1[Ll(Aa + Ae’K(zi)[S]) 

wherc Au = a11 - U S  - U L  and Aa’ = azl - 2as 
- U L .  For the present purpose the substrate 
concentration is written as 
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constant may vary with the wavelength a t  which 
the absorbance measurements are made. 
1 : 1 Complex and Ligand Dimer.-This situation is 

made rather complicated because the assumption 
that Lt = [I,], made hitherto in the spectral analysis, 
is not valid; a very appreciable fraction of the UII- 
complexed ligand may exist as the dimer. This 
system does not appear to be amenable to a useful 
treatment according to the manner of the earlier 
examples. 
1 ; 1 Conzplex and Substrate Dimer.--This system 

does not lead to a useful analysis. The extent of 
dinierization will depend upon the ligand concentra- 
tion (unlike the case, discussed earlier, where B 
was the only coniplex present) because the free 
substrate concentration is a function of ligand 
concentration. 

Kinetic Method.-Two 1 : 1 Complexes.-Proceed- 
ing as for a singlc complex, this basic equation is 
obtained 

ks‘ = ksfs + k s L f s L  t- kr,sfr.~ 

which, sincefs + ~ S L  + f1.s = 1, leads to 

k s  - ks‘ = qsLk8fsL + ~ L S ~ S ~ L S  

(Eq. 47) 

(Eq. 48) 

whcrc thc p’s are defined as before. Expressions for 
the fractional compositions are found by combina- 
tion of the material balance and stability constant 
equations, 

[ S ]  = St 
1 + K11 L I ( 1  + 2KW IS1 1 

’I’hcsc cquatioris are combined to give 

from which it is seen that the apparent spectrally 
measured constant is 

Kll’ = K11 + 2KllK(zl)[Sl (Eq. 43) 

This conclusion is not always valid, however; a 
fuller discussion is given under the next system. 

1 :l  and 1 :2 Complexes.-Again it is evident that 
the plot should be nonlinear, but Johnson and 
Bowen (11) have found that the curvature way be 
overlooked. The development of the appropriate 
equation is similar to that in the preceding example; 
the equation is 

where AUII = all - as - UL and Aalz = U H  - as 
- U L .  The apparent stability constant is 

Kii’ = Ku + KnK(12)[Ll (Hq 45) 

That Eq. 44 is not the equation of a straight line 
must be kept in mind, however, and i t  may be 
expected that the range of ligand concentration over 
which the system is studied may affect the results. 
Suppose the ligand concentration is made very 
large, so that AalzK(n)[L] >> Aan; then Eq. 44 
becomes 

b/AA = l/Aai&d(1z) [LIZ + I/AalzSt 

2nd the apparent constant is 

K11’ = RllK(I*)[Ll (Eq 46) 

The necessary condition for Eq. 46 to be approached 
is a function not only of [L], but also of the quanti- 
ties hall, AUIZ, and K(12). This conclusion agrees with 
the calculations of Johnson and Bowen (l l) ,  who 
designed hypothetical systems to demonstrate these 
effects. (These remarks apply also to the system 
described by Eq. 42, which is, however, not as 
sensitive to these effects because [S] is usually much 
smaller than [L].) Thus, the apparent stability 

where K = K ~ L  + KLS. Substituting these into 
Eq. 48 and rearranging gives the linear form 

1 
- - t   SIXST ST, + PI~&I,s)[LI 

1 
k s  - ks‘ 

showing that K11‘ is givrn by Eq. 50. 

Kn‘ = K ~ L  + KLY (Eq. 50) 

This result will be obtained evrn if one ol the com- 
plexes has a reactivity equal to that of the free 
substrate (Le . ,  if onc of thc 4’s cquals zero). 
1:l and 2 : l  Complexes.-Suppose that the S?L 

complex is unreactive. Then the basic equation of 
the system is 

ks’ = k s f s  + kllfll 

But the fractions fs and fll are functions of [S] , so 
ks’ will vary during the course of the reaction, as 
pointed out in conncction with Eq. 27. If this 
variability should not be evident, the usual kinetic 
treatment will be made. The above rquation is 
transformed into 

k s  - ks’ = kdyiifi i  + f z i )  

where fll = [SL]/S, and .fil = Z[SpLJ/St. This 
leads finally to Eq. 51. 

This is not the equation of a straight line, but, if 



778 Journal of Pharmaceutical Sciences 

calculated monomer concentration taking the place 
of total concentration in constructing the graph. 
This procedure uses the approximation Lt = [L] + ~ [ L z ] ;  i.e., consumption of ligand by formation 
of SL is ignored. 

1 :1 Complex and Substrate Dimei.-Thc cxperi- 
mental rate constant is a function of [S] and, 
therefore, varies during the reaction. This system 
cannot be conveniently analyzed. 

ks’ appears to be constant during a reaction (perhaps 
because only a few per cent of total substrate is 
allowcd to rcact during the observation pcriod), 
then Eq. 51 will be essentially linear. The apparent 
stability constant will be 

KII‘ = KII + ZKiikr(ti)[SI (Eq. 52) 

If, howevcr, 2K,,,)[S] >> 1, the apparent constant 
will be K11’ = %K11K<?1) [S] . 

1 : 1 and 1 : 2 Complexes.-The basic cquation is 

which can bc transformed to 

k s  - ks‘ = qiiksfii + PiPksJit 

By mcans of thc stability constant definitions and 
the material balance on SL,  this is converted to 

This is not the equation of a Straight line, but under 
many circumstances i t  will probably yield an 
essentially linear plot. Equation 54 has thc same 
form as Eq. 41 for the spectral treatment of this 
system, and the earlier comments apply. The 
apparent stability constant can range from 

K I ~ ’  = KII + KiiK(i~)[Ll (Eq. 55) 

to 

K I ~ ’  = KiiK(i2)[Ll (Eq. 56) 

depending on the relative magnitudes of q11 and 
qlzK(1~) [L] ; thus, the value of KII’ may be dependent 
upon thc quantities qll and q12. 

I : 1  Complex and Ligand Dimer.-As in the 
spectral method, this systcm docs not give a simple 
analytical solution. If such a system is detected, 
perhaps thebcst way to trcat it  would he to determine 
by an independent method the ligarid dimerizatiorl 
constant, then to calculate [L] as a function of Lt ,  
and finally to  treat the system as containing the 
single 1:l complcx (thus using Eq. 23) ,  with the 

DISCUSSION 

Criteria for System Classification.-The opera- 
tional definitions of the apparent 1 : 1 stability con- 
stants may be summarized as follows: 

Solubility.-Plot S t  versus Lt; then 

slope 
~ - 1 1 ’  = intercept (1 - slope) 

Spectral.-Plot b / A A  ueysus l/LL; then 

KIil = intercept/slope 

Kinetic.-Plot 1/( ks - Es’) I ~ ~ Y S U S  l /Lt;  then 

KIl’ = intercept/slope 

The results of the preceding analyses, giving KI1’ 
in tcrms of stability constants and concentrations, 
are gathered in Table I. The earlier discussion 
should bc consulted for details concerning as- 
sumptions, approximations, and limits of ap- 
plicability of these relationships. With their aid. 
it would be appropriate to consider how the com- 
parative study of complexation systems with several 
techniques may yield information inaccessible with a 
single probc. 

The usual order of investigation of a complex 
system will be ( a )  the determination of the stoichiom- 
etrics of all complexes present in significant coil- 
centrations or proportions, ( b )  the evaluation of 
stability constants for these complexes, (c)  ulti- 
mately the determination of the structure and 
chcmical and physical properties of each complex. 
Several criteria can be suggested to help in establish- 
ing stoichiometries and stability constatits. 

TABLE ~.-THEURETICAL EQUIVALENTS OF APPARENT STABILITY CONSTAXTS DETERMIXED ASSUMING 1.1 
COMPLEXATION 

Complexes KII‘ as Found from- -- 
Present Solubility Spectra Kinetics 

None 0 0 0 
LZ 0 0 0 
SZ 0 0 0 
SL 

S2L 

SL + LS 

SL + s2L 

SL + SLZ 

SL + Lt 

SL + s, 
a Variable; see text for discussion. See text. 
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Relative Values of KII’ by the Solubility, Spectral, 
and Kinetic Techniques.-Table 1 shows the rationale 
for this criterion. If a finite value of K,,‘ is obtained 
(concerning this point see the later discussion), its 
relative value by the three methods may allow a 
partial assignment of stoichiometric types. Thus, 
if all three methods yield the samc numerical value, 
the system probably contains only 1 : 1 complexes. 
The possibility exists, however, that idcntical values 
can be observcd with two methods by a coincidental 
combination of constant and conccntrations. This 
can easily be detected as pointed out below. 

Dependence of K11’ on Initial Total Substrate 
Concentration by the Spectral and Kinetic Techniques. 
-Whcn a complex S,L, is present for which m is 
greater than 1, KI1’ by the spectral and kinetic 
methods will be a function of substrate concentra- 
tion. Kll’ should be determined with a t  least two 
appreciably different initial substrate concentra- 
tions. h significant dependence of Kll’ on substrate 
concentration means that a t  lcast one complex is 
present with m larger than 1. The functional form of 
this dependence may yield further information. 
Because of this dependence, the substrate conccntra- 
tion should be specificd whcn complex stability 
constants arc reported. 

Dependence of Kll’ on Ligand Concentration by the 
Solzibility 2’echnique.-In cach of the three tecli- 
niques the ligand concentration is the independent 
variable. As noted earlier, linear spectral plots may 
be observcd cven though a curve is theoretically 
to be expected, and similar results will apply in the 
kinetic mcthod. The solubility inethod offcrs the 
best chance to detect a dependence of K11’ on ligand 
concentration. If a positive curvature is noted in 
the phase diagram a t  lcast one complex is present 
of thc form SL,, where n is greater than 1. Negative 
curvature may indicate dimerization (or highcr 
aggregate formation) of the ligand, as in the system 
SL $- L2. A linear phase diagram does not prove 
that there are 110 complexes of thcse types, for 
certain combinations, as, for example, the system 
SL + S b  + I,?, may give risc to a11 essentially 
linear CUNC over wide ranges of ligand conccntra- 
tion (12). 

Dependence of ks’ on Time.-When a comples is 
present with two or more S molecules per complex 
molecule, the apparent rate constant should vary 
with time. In order to detect this variation it may 
be necessary to follow the reaction for a t  least two 
half-lives. If variability of ks‘ is not observed the 
conclusion cannot be positive that all complexes 
contain only one S molecule, because of thc assump- 
tions made concerning the fate of the higher order 
complex, but this is a reasonable tentative infcrcncc. 

Dependence of KI1’ on Wavelength in the Spectral 
Technique.-This criterion has bccn emphasized by 
Johnson and Boweu (11 ) .  If Kn‘ varies with the 
wavelength, a t  least one higher order complcx is 
present. The thcorctical reason for this dependence 
was pointed out in conncction with Eq. 46. 

Independent Eoidence Relating to Stoichiometry and 
Stability.--Scrme of these additional sources are : 
estimate of stoichiometry from isolable complexes 
or from the solubility phase diagram (6),  Beer’s 
law behavior of pure substrate and ligand, liquid- 
liquid partition studies of substrate and ligand to 
detect and measure the extent of self-aggregation 
PI ncesses, and spectral studies leading to stoichio- 
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metric ratios (e.g.. the method of continuous varia- 
tions). 

These criteria will obviously not be capable of 
defining the naturc of all complcxation systems, but 
they should help considerably in this problem. 
The possibility that systems may be encountered 
that are more complicated than those in Table I is 
very real and must be kept in mind. 

It is most important to realize that when thc 
spectral K,,‘ is smaller than cithcr the solubility or 
the kinetic constant this does not constitute evidence 
that only the charge-transfer portion of the complex 
interactions is being measured. If only 1 : 1 com- 
plcxes are present, the three methods will yield the 
same apparent stability constant no matter what 
the distribution of forces responsible for maintaining 
the complexes. A4s long as one of thcsc complexes 
possesses a changed absorption spectrum this will 
be true, cvcn if the other complexes cause no spec- 
tral change. The same kind of argument applies to 
the kinetically determinedKll’, if only 1 : 1 complexes 
exist, and a t  least one of these has an altered re- 
activity, the apparent K1l’ will be equal to the sum 
of all the true 1 : 1 constants. Thc gcncral statement 
may bc made that if reliable KII’ values for a system 
differ when determined by the thrcc rncthods, some 
complcxcs are present other than 1 : 1 cornbitiations 
of substrate and ligand. 

Thc reliability of stability constants evaluated 
spectrophotometrically as cvidcncc for the existence 
of complexes has been explored by Person (13). who 
suggests that as a practical guide a 1: 1 stability 
constant must be equal to or greater than O.1/Lmax.’ 
where Lmr,,’ is the highest ligand concentration used 
in thc study, in order for the constant to bc con- 
sidered significantly different from zero. Suppose, 
fur example, that the upper limit of ligand concentra- 
tion in a spectral study is 0.2 M ;  then the borderline 
value of Kll’ is 0.5 iL-1. A value smaller than this 
cannot be taken as evidence for complexing. Similar 
guides could be forrnulatcd for other techniques. 
Throughout this paper the authors have supposed 
that nonzero valucs of stability constants can be 
demonstrated. 

Capabilities of the Solubility, Spectral, and Kinetic 
Metbods.--’rhc solubility method is considered by 
many to possess the disadvantage of nonsclectivity 
in that it measures the results of all types of inter- 
actions. But the foregoing analysis shows that the 
Spectral arid kinetic methods are also subjcct to this 
type or nonselectivity, and, in thc mathematical 
tcrms 01 the atialysis a s  represented in Table I, it 
may be held that the solubility method is actually 
more sclcctive than the other techniques. The 
solubility method possesses two real drambarks: 
it is primarily limited to slightly soluble solid 
substrates, and thc substrate concentration cannot 
be varied. In those systems where thc Iigand is not 
too soluble the second disadvantage may be elimi- 
nated by reversing the system, treating S as L arid 
vice versa. I t  is of course not possible to extrapolate 
a solublity krl1’ to zero concentration of substrate. 

Solubility studies arc carricd out at constarit IS], 
and spectral studies are a t  constant S1. Part of the 
difficulty in analyzing spectral data follows from this 
difference, but the capability of varying St when 
desired is an advantage of the spectral method. 
( I t  is possible to perform some spectral complcxation 
studies a t  solubility ecjuilibriuin, thus setting [S]  
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= So and letting St vary throughout the run; this 
may simplify some analyses.) The great disadvan- 
tage of the spectrophotonietric method is of course 
that a spectral change must occur upon complexa- 
tion, but when a change is observed the method is 
very convenicnt, especially since it provides wave- 
length as an additional variable. In a general sense, 
thc spcctrdl technique is neither more nor less 
selective, when applicable. than are other methods. 
The mathe~natics developed for spectral studies can 
be applied to any othcr physical property that is 
directly proportional to a species concentration; 
examples are refractive indcx (14), optical rotation 
(15), and fluorescence intensity. 

The kinetic mcthod is carried out with neither [S] 
nor St  held constant (though if initial rates were 
measurcd S, could be considered the constant factor). 
Mathematically i t  is similar to the spectral method ; 
but it possesses the advantage that i t  is applicable 
even if no spectral change occurs, and the disadvan- 
tagc that it does not include a convenient variable 
corresponding to wavelength. (The parallel to 
wavclcngth is complex reactivity, but this cannot 
easily be altered without changing the system.) 
Throughout this paper the inhibition of rates by 
complex formation has been taken as the basis for 
the analysis, but the complex may in some systems 
exhibit an enhanced reactivity, and this phenomenon 
also can serve for study of the complex equilibrium 
(16, 17). The outstanding potential advantage of 
the kinetic technique is its capability for providing 
information about the reactivity, and thus the 
structure, of the complex. This capability has not 
yet been exploited, although some attempts have 
been made to utilize it (5), and further studies in 
the chemistry of organic compleses may find its 
application valuable. 

Conclusions.-Thc application of more than one 
experimental technique is advisable in the study of 
complexation systems. By comparing the apparent 
stability constants evaluated by the several methods 
on the basis of an assumed 1: 1 stoichiometry be- 
tween substrate and ligand, it may be possible to 
establish, in part, the stoichiometries of the com- 
plexes present. If the solubility, spectral, and 
kinetic techniques yield essentially identical values 
for the apparent 1 : l  stability constant (and if 
certain other criteria suggested in this paper are 
satisfied), it may be concluded that only 1 : 1 com- 
plexes betwecn substratc and ligdnd are present. 
If the three techniques do not give the same value, 
the manner in  which they differ and their de- 
pendence on variables of the system may permit a 
further classification. On the basis of the mathe- 
matical analysis it is concluded that the solubility, 
spectral, and kinetic methods for studying complex 
formation are about equally nonsclcctive in their 
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responses to multiple complexes, with the solubility 
method perhaps possessing a slight advantage in 
specificity. 

APPENDIX 

S, substrate molecule 
L, ligand molecule 
S&,, gcneral formula for complex 
SL, total (formal) concentration of S 
Lt,  total (formal) conccntration of L 
&,, equilibrium molar solubility of substrate mono- 

[i], molar concentration of species i 
j8  = [S] / S t ,  fraction of S in uncomplexed form 
jm, = m[SmL,]/St ,  fraction of S in form of S,L, 
Krnn = [S,L,]/[S]m[L]n, over-all stability constant 

mer in absence of L 

K ’ ~ ~ ,  - apparent stability constant assuming I : I 

ks ,  specific rate constant for a reaction of S 
k‘s, apparent rate constant for S in presence of L 
k,, specific rate constant for a reaction of S,L, 
rmn = k,,/ks, relative reactivity of S,L, 
qnm = 1 - Tmn 
6 ,  cell path length 
as, molar absorptivity of S 
am,,, molar absorptivity of S,L, 
A ,  absorbance 

stoichiometry 
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